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Gamma-aminobutyric acid (GABA), a four-carbon non-protein 
amino acid, has drawn much attention since its first identifica-
tion over 60 y ago in potato tuber,1 rat brain2 and yeast extract.3 
Subsequent investigations of GABA functions followed two main 
directions: signaling and metabolism. Signaling effects of GABA 
have been intensively tackled in mammalian models. It has been 
clearly established that GABA acts as a neurotransmitter4 and 
impacts the central nervous system development.5,6 In plants, 
early studies in the 70–80s reported rapid GABA accumulation 
in response to many environmental cues.7-10 Based on these obser-
vations, it has been hypothesized that GABA could participate in 
stress responses and tolerance. Nevertheless, for decades, GABA 
functions in plants remained elusive. Major progress came along 
with the genomic era and availability of the powerful embedded 
tools. Genetic analyses in Arabidopsis demonstrated that GABA 
acts as a signal molecule for pollen tube guidance and elonga-
tion.11,12 Alteration of tricarboxylic acid (TCA) cycle enzyme 
activities shed light on GABA metabolic function and stressed 
the tight connection between GABA and respiration.13-15

The functional implication of GABA metabolism in 
Arabidopsis salt stress tolerance has recently been reported.16,17 
The GABA transaminase gaba-t/pop2-1 mutant root growth 
was shown hypersensitive to the ionic component of salt stress,16 
confirming the long-standing hypothesis of GABA involvement 
in plant stress response. Metabolic data revealed that GABA 
bridges amino and organic acids metabolisms in roots under 
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saline conditions.16,17 Moreover, a genome-wide transcriptional 
analysis indicated that central carbon metabolism is altered 
upon the loss of GABA metabolic function during salt stress. 
Indeed, genes involved in remobilization of carbon reserves 
(i.e., sucrose and starch) were found higher expressed in the 
gaba-t/pop2-1 mutant.17 However, despite this transcriptional 
upregulation, a decrease in soluble sugars was observed in the 
mutant,16,17 a response that might be a compensatory effect of 
enhanced glycolysis balancing the reduced succinate supply due 
to GABA metabolism defect.17 Here, GABA function was fur-
ther explored by (1) investigating the phylogeny of the GABA 
transaminase (GABA-T) protein family, and (2) performing 
a computational analysis of Arabidopsis GABA-T co-expressed 
genes.

Phylogenetic Analysis of GABA-T Protein Family

GABA-T-like protein sequences from plants, human and yeast 
were retrieved from Phytozome (www.phytozome.org) and 
GenBank (www.ncbi.nlm.nih.gov/genbank) databases based 
on sequence homology to Arabidopsis GABA-T (AtGABA-T; 
At3g22200). Protein sequences were aligned using MEGA5 
software (www.megasoftware.net) and MUSCLE algorithm. 
Subsequently, phylogeny was reconstructed using the Neighbor-
joining method (Jones-Taylor-Thornton model). Human and 
yeast GABA-T sequences were used to root the tree. Likewise, 
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conserved duplication of GABA-Ts was uncovered in monocots 
while in dicots only closely related paralogs evolved in some 
species (Fig. 1). Strikingly, the phylogenetic distance between 
the Arabidopsis aminotransferases and plant GABA-Ts was 
shorter than the distance between the functional yeast, human 
and plant GABA-T homologs (Fig. 1). This suggests that plant 
aminotransferases might share common substrates and activi-
ties. Arabidopsis, tomato and rice GABA-Ts, able to use both 

a set of Arabidopsis aminotransferases closely related to 
AtGABA-T [i.e., alanine:glyoxylate aminotransferases (AGT2 
and AGT3), β-alanine aminotransferase (PYD4), ornithine 
delta-aminotransferase (DELTA-OAT) and acetylornithine 
transaminase (WIN1)] served as outgroup. The phylogenetic 
reconstruction clearly discriminated GABA-Ts from ances-
tors (i.e., Physcomitrella patens and Selaginella moellendorf-
fii), monocot and dicot lineages. Furthermore, an early and 

Figure 1. Phylogenetic relationships among plant GABA-T family. Neighbor-joining tree was constructed using the MEGA5 software. Human and yeast 
GABA-T protein sequences were used to root the tree. A set of Arabidopsis proteins closely related to AtGABA-T was included as outgroup. Branch 
lengths are proportional to phylogenetic distance; bootstrap values (expressed as percentage) from 1,000 iterations are indicated on main branches. 
For each protein, organism name and locus identifier/GenBank accession is provided.
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hypothesis, the term “Lipid metabolism” was found six times 
enriched among AtGABA-T co-expressed genes under stress 
conditions (Table 1B).

Phylogenetic and bioinformatic data presented in this paper 
provide a platform to propose novel hypotheses of GABA func-
tions in plants. In this context, it would be informative to 
experimentally explore the connection between GABA metabo-
lism and glyoxylate cycle under stress conditions.
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pyruvate and glyoxylate as amino group acceptor,18-20 exemplify 
the potentially broad substrate range of this class of proteins.

Functional Classification of AtGABA-T  
Co-expressed Genes

As AtGABA-T plays a prominent role in the metabolism of 
stressed roots,16,17 AtGABA-T co-expressed genes were identified 
in “AtGenExpress Root” and “AtGenExpress Stress” transcrip-
tomic series using the Expression Angler software.21 Applying a 
stringent Pearson correlation coefficient threshold of 0.8, 254 
and 140 genes co-expressing with AtGABA-T were retrieved 
from “Root” and “Stress” data sets, respectively (lists in 
Supplemental data). Among them, the expression of 12 genes 
correlated with AtGABA-T expression in both data sets (list 
“Root and Stress” in Supplemental data). Next, a functional 
analysis of the three gene sets (i.e., “Root,” “Stress,” “Root and 
Stress”) was performed using the Classification SuperViewer 
software22 and MapMan terms. Interestingly, “Polyamine 
metabolism,” “N metabolism” and “TCA org. transformation” 
terms were found more than 10-fold enriched among AtGABA-T 
co-expressed genes in the “Root” serie (Table 1A). This result 
is in agreement with the previous finding that GABA links N 
and C metabolisms in roots.16,17 Other significantly enriched 
terms were associated with sugars (i.e., CHO), nucleotide and 
amino acid metabolisms, as well as with transport process and 
mitochondrial electron transport (Table 1A). The latter obser-
vation further corroborates the previously suggested participa-
tion of GABA metabolism to root respiration.17 In the gene list 
extracted from the “Stress” data set, “Gluconeogenesis/glyoxyl-
ate” term was almost 37-fold enriched compared with the entire 
genome (Table 1B). Strikingly, the same term was recovered as 
200 times overrepresented in the overlap between “Root” and 
“Stress” series (Table 1C). The glyoxylate cycle allows to bypass 
the decarboxylation steps of TCA cycle and to use lipids as 
respiratory substrate or carbon source for gluconeogenesis.23,24 
Regulation of the glyoxylate cycle genes is tuned by the carbon 
metabolic status of plants; the glyoxylate cycle is in particular 
induced under sugar starvation conditions.25 Interestingly, roots 
of the Arabidopsis gaba-t/pop2-1 mutant are deprived in sugars 
after salt stress,16,17 a similar phenomenon is observed in plants 
lacking glyoxylate cycle under low light,26,27 two conditions 
known to lead to limited carbon availability. These observa-
tions raise intriguing hypotheses for GABA function in plants, 
especially regarding stress acclimation. The glyoxylate cycle is 
initiated by the isocitrate lyase that cleaves isocitrate into glyox-
ylate and succinate in peroxysomes. Given that AtGABA-T can 
use glyoxylate as amino group acceptor,18 it can be hypothesized 
that it uses directly glyoxylate derived from isocitrate cleavage 
to form glycine and, after the succinic semialdehyde dehydro-
genase step of GABA metabolism, a second succinate molecule. 
Alternatively, GABA metabolism could be embedded in a fine 
tuned metabolic network involving lipid and protein respira-
tion that would allow stressed plants to keep fuelling cells with 
energy upon reduced carbon fixation. In support of second 

Table 1. Functional classification of AtGABA-T co-expressed genes

MapMan term Frequency p-value

A. Root series (254 co-expressed genes)

Polyamine metabolism 16.5 6.2E-03

N-metabolism 15.2 9.4E-04

TCA/org. transformation 11.5 2.4E-06

Co-factor and vitamin metabolism 6.5 3.0E-03

Nucleotide metabolism 5.9 6.4E-05

Minor CHO metabolism 5.3 2.2E-03

Amino acid metabolism 5.1 2.6E-05

Major CHO metabolism 3.9 3.5E-02

Transport 3.7 1.6E-09

Mitochondrial electron transport/ATP synthesis 3.4 2.5E-02

B. Stress series (140 co-expressed genes)

Gluconeogenesis/glyoxylate 36.8 1.3E-03

Nucleotide metabolism 8.0 1.0E-04

Lipid metabolism 6.3 1.3E-06

TCA/org. transformation 6.0 4.0E-02

Protein 1.3 2.7E-02

C. Genes common to both lists (12 genes)

Gluconeogenesis/glyoxylate 214.8 4.6E-03

TCA/org. transformation 34.9 2.8E-02

Minor CHO metabolism 22.5 4.3E-06

AtGABA-T co-expressed genes were retrieved from “AtGenExpress Root” 
and “AtGenExpress Stress” transcriptomic series (Pearson correlation 
coefficient ≥ 0.8) available on the Expression Angler website. Genes 
co-expressed with AtGABA-T in “Root” (A), “Stress” (B) and in the overlap 
of both series (C) were functionally classified using the Functional 
SuperViewer software and MapMan terms. Only terms with a p-value 
below 0.05 are displayed.
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